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Abstract

The Hippo signaling pathway, consisting of a highly conserved
kinase cascade (MST and Lats) and downstream transcription co-
activators (YAP and TAZ), plays a key role in tissue homeostasis
and organ size control by regulating tissue-specific stem cells.
Moreover, this pathway plays a prominent role in tissue repair and
regeneration. Dysregulation of the Hippo pathway is associated
with cancer development. Recent studies have revealed a complex
network of upstream inputs, including cell density, mechanical
sensation, and G-protein-coupled receptor (GPCR) signaling, that
modulate Hippo pathway activity. This review focuses on the role
of the Hippo pathway in stem cell biology and its potential impli-
cations in tissue homeostasis and cancer.
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Introduction: The Hippo signaling pathway

The Hippo pathway is evolutionally conserved and regulates diverse

cellular processes, including cell survival, proliferation, differentia-

tion, and organ size. This pathway was initially characterized

through clonal genetic screens identifying genes involved in tissue

growth control in Drosophila melanogaster. In Drosophila, the core

components of the Hippo pathway include the kinase cascade of

Ste20-like kinase Hpo (Hippo) and NDR family kinase Wts (Warts)

[1–7]. Hpo complexes with the scaffolding protein Sav (Salvador) to

phosphorylate and activate Wts, which then forms a complex with

its regulatory protein Mats (Mob as tumor suppressor) [8–10].

When in complex with Mats, Wts directly phosphorylates the tran-

scriptional coactivator Yki (Yorkie), sequestering it in the cytoplasm

by promoting its interaction with 14-3-3 [11–15]. Conversely, when

the Hippo pathway is inactivated, unphosphorylated Yki translo-

cates into the nucleus where it associates with the TEAD/TEF family

transcription factor Sd (Scalloped) to initiate gene expression,

promoting cell survival and proliferation [16,17]. Yorkie can also

bind to other DNA binding proteins including Mad, Homothorax

(Hth), and teashirt to promote gene expression [18,19].

The Hippo pathway is a tumor suppressor pathway because

mutations in these regulatory pathway components result in an

overgrowth phenotype.

In mammals, the Hippo pathway consists of the serine/threonine

kinases MST1/2 (mammalian Ste2-like kinases, Hpo orthologs) and

LATS1/2 (large tumor suppressor kinase 1/2, Wts orthologs) [7,20–

22]. Activation of the Hippo pathway results in the inactivation of

YAP (Yes-associated protein, Yki ortholog) by LATS1/2-mediated

direct phosphorylation on YAP Ser127 (in humans). Phosphorylated

YAP is sequestered in the cytoplasm via binding to 14-3-3 and is

degraded in a ubiquitin-proteasome-dependent manner, which

depends on phosphorylation of YAP Ser381 and Ser384 [23].

Conversely, dephosphorylated YAP acts mainly through TEAD

family transcription factors to promote cell proliferation and organ

growth [24]. TAZ (transcriptional coactivator with PDZ binding

motif), a paralog of YAP in mammals, is regulated by the LATS1/2

in a similar manner. YAP/TAZ are the major downstream mediators

of the Hippo pathway. Besides the TEAD family transcription

factors, YAP/TAZ also interacts with other transcription factors

including Smad, Runx1/2, p73, ErbB4, Pax3, and T-box transcrip-

tion factor 5 (TBX5) to mediate the transcription of a diverse array

of genes, although the biological functions of these other transcrip-

tion factors in mediating Hippo signaling are less clear [25].

Although the core signaling cascade from Hpo (MST1/2) to Yki

(YAP) is well understood, the upstream regulators of the Hippo

pathway are just beginning to be delineated. Interestingly, accumu-

lating evidence from both Drosophila and mammals has shown that

apical–basal polarity proteins may regulate the Hippo pathway by

controlling YAP/TAZ localization. For instance, earlier studies in

Drosophila implicated the apical membrane-associated FERM-

domain proteins Mer (Merlin) and Ex (Expanded), which are apical

tumor suppressors, and the WW and C2 domain-containing protein

Kibra (kidney and brain protein) as components upstream of Hpo.

The Mer/Ex/Kibra complex recruits Hpo to the plasma membrane

to enhance its kinase activity [26–30]. The apical transmembrane

protein Crb (Crumbs) also interacts with Ex and modulates its (Ex)

localization and stability [31–35]. Similar to Crb, the Scrib (Scribble)

complex (Scrib/Dlg/Lgl) and Par3 polarity complex (Par3/Par6/

aPKC) have been implicated in the regulation of the Hippo pathway

activity [34,36,37]. In addition, a multitude of other cellular junction
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proteins, such as PATJ, PALS1, AMOT (angiomotin), ZO-1 (zona

occludens protein 1) [38,39], E-cadherin [40], a/b-catenin [41,42],

PTPN14 (protein tyrosine phosphatase non-receptor type 14)

[43–45], and Ajuba/Zyxin protein [46,47], have also been identified

as regulators or interacting partners of core Hippo pathway compo-

nents in mammals. Other newly characterized Hippo pathway regu-

lator is the PCP (planar cell polarity) complex, composed of

transmembrane cadherins Ft (Fat) and Ds (Dachsous). In Drosoph-

ila, Ds binds to Ft, which in turn activates the Hippo pathway by

inhibiting the interaction between Zyxin and Wts, thus favoring its

(Wts) degradation [47]. The vertebrate homolog of Ft is FAT4, but it

is still unclear whether FAT4 is involved in regulating the Hippo

pathway in vertebrates [48,49]. In any case, further studies are

needed to define the exact role of the PCP in regulating the Hippo

pathway.

Several studies have reported that YAP/TAZ is regulated by

mechanical cues from neighboring cells and the extracellular matrix

[50–52]. Moreover, the Hippo pathway is potently and acutely regu-

lated by a wide array of extracellular hormones, including lysophos-

phatidic acid (LPA), sphingosine-1-phosphate (S1P), epinephrine,

glucagon, and thrombin [53–55]. These mechanical and hormonal

cues appear to be mediated through the actin cytoskeleton. Mechan-

ically, stabilization of F-actin results in YAP/TAZ activation, while

the disruption of F-actin leads to YAP/TAZ inactivation [56].

Hormonally, G-protein-coupled receptors (GPCRs) transduce extra-

cellular hormonal cues through RHO GTPases and the actin cyto-

skeleton to modulate YAP/TAZ. GPCR signaling can either stimulate

or inhibit YAP/TAZ activity in a manner dependent on the coupled

G-protein. For example, activation of G12/13 or Gq/11 stimulates

YAP/TAZ, while Gs inhibits YAP/TAZ. Surprisingly, the LATS1/2

kinase may not be involved in YAP/TAZ regulation by mechanical

cues [50], whereas the LATS1/2 kinase is involved in GPCR-medi-

cated hormonal cues to YAP/TAZ and MST1/2 is not required. The

precise mechanism by which the actin cytoskeleton relays upstream

cues to modulate LATS1/2 kinase activity is still not fully under-

stood and remains a key question in the field.

Beyond the main components of the Hippo pathway described

above, many other additional proteins have been reported to modu-

late the Hippo pathway, including TAOK1-3 (thousand and one

amino acid protein kinases) [57,58], MARK1-4 (MAP/microtubule

affinity-regulating kinases) [59,60], SIK1-3 (salt-inducible kinases)

[61], RASSF (RAS association domain-containing family protein)

[61–63], MASK (multiple ankyrin repeats single KH domain-contain-

ing protein) [64,65], HIPK2 (homeodomain-interacting protein

kinase 2) [66,67], and CSNK1 (casein kinase 1) [23,68] (Fig 1).

Hippo signaling in embryogenesis and embryonic
stem cells

The first cell differentiation event in mammalian development occurs

during preimplantation, when the outer blastomeres of the embryo

form an outer epithelial trophectoderm (TE) that envelops the remain-

ing blastomeres, the inner cell mass (ICM). The TE is necessary for

implantation and later contributes to the placenta. Embryonic stem

cells (ESCs) are pluripotent cells, derived from the ICM of an early blas-

tocyst, that have the potential to self-renew and differentiate into differ-

ent cell types and tissues. This pluripotent capacity raises hope for

their potential application in regenerative medicine [69].

The association between Hippo signaling and stem cell-like prop-

erties has been previously shown. For example, Yap�/� embryos

arrest during development around E8.5 and display a yolk sac

vascular defect [70]. The YAP target transcription factors, TEADs,

are the earliest genes expressed at high levels during embryo devel-

opment, and TEAD4 is required for specification of the TE lineage

during preimplantation of the mouse embryo [71–73]. At the blasto-

cyst stage, TEAD4 promotes expression of multiple genes associated

with trophoblast specification, including Cdx2 and Gata3, which are

selectively expressed only in blastomeres destined to become TE

[71,74,75] (Fig 2A). Moreover, it has been shown that this activity

of TEAD4 is dependent on YAP localization in the nucleus, which is

modulated by cell–cell contact and LATS1/2-mediated phosphoryla-

tion. This finding suggests that YAP localization is essential for

TEAD4 activity and cell fate specification [76]. Additionally, NF2

(Neurofibromin 2) and AMOT, two upstream components of the

Hippo pathway, facilitate YAP phosphorylation via LATS1/2 during

cell fate specification of mouse preimplantation development

[77,78] (Fig 2B). Although TAZ is also highly enriched in the devel-

oping mouse embryo, inactivation of the gene encoding TAZ,

Wwtr1, results in only minor skeletal defects and the development

of renal cysts, and these mice still grow to adulthood [79]. Alto-

gether, these results demonstrate a critical role for YAP and TEADs

in the process of cell fate determination in early mouse embryos

[67,73].

Recently, the Hippo pathway has also emerged as a crucial

regulator of pluripotency in vitro [80,81]. Initially, BMP and LIF

Glossary

BMP Bone morphogenetic protein
CC Cholangiocarcinoma
CSNK1 Casein kinase 1
FGF Fibroblast growth factor
HCC Hepatocellular carcinoma
Hering canal cells Origin of liver stem/progenitor cells in adult

livers
HIPK2 Homeodomain-interacting protein kinase2
Hippo Ste20-like kinase Hpo
Id Inhibitor of DNA binding proteins
LATS1/2 Large tumor suppressor kinase 1/2, Wts orthologs
LIF Leukemia inhibitory factor
MARK1-4 MAP/microtubule affinity-regulating kinases
MASK Multiple ankyrin repeats single KH domain-

containing protein
Mats Mob as tumor suppressor
Mob1 MOB kinase activator 1A
MST1/2 Mammalian Ste2-like kinases, Hpo orthologs
PALS1 Membrane-associated palmitoylated protein 5
PATJ PALS-1-associated tight junction protein
PcG Polycomb group protein
RASSF RAS association domain-containing family protein
Sav1 Salvador homolog 1
SIK1-3 Salt-inducible kinases
TAOK1-3 Thousand and one amino acid protein kinases
TAZ Transcriptional coactivator with PDZ binding

motif
TGF-b/activin Transforming growth factor B
Warts NDR family kinase Wts
YAP Yes-associated protein, Yki ortholog
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signals were shown to maintain mouse ESCs in an undifferentiated,

pluripotent state, whereas human ESCs require FGF, BMP, and

TGF-b/activin [82–84]. Fine-tuning these multiple signaling path-

ways is crucial in maintaining the balance between differentiation

and self-renewal in ESCs. Supporting the role for YAP and TEADs

in maintaining pluripotency, the high expression of YAP and

TEAD2 in ESCs, neural stem cells, and hematopoietic stem cells

initially placed these genes into a general ‘stemness’ transcrip-

tional signature based on transcriptional profiling [85]. Tamm

et al found that YAP and TEAD2 could activate the expression of

ESC master transcriptional regulators Oct4 and Nanog in mamma-

lian ESCs. Furthermore, restricting YAP and TEAD2 expression or

inhibiting TEAD function resulted in differentiation toward the

endoderm lineage [86]. Conversely, YAP protein and mRNA

levels are significantly decreased with the loss of pluripotent

markers during ESC differentiation [87]. In addition, YAP is

sequestered and thereby inactivated in the cytoplasm, and conse-

quently, a large number of genes important for stem cell mainte-

nance and function, including PcG, Nanog, Oct3/4, and Sox2, are

repressed.

Additional evidence for the role of YAP in pluripotency is seen

in induced pluripotent stem cells (iPSCs). The seminal findings

by Yamanaka’s group demonstrated that mouse somatic cells can

be reprogrammed into iPSCs by inducing the activity of four
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Figure 1. Schematic models of the Hippo pathway in Drosophila and mammals.
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transcription factors: Sox, Oct3/4, c-Myc, and KLF4 [88]. YAP is

activated during the reprogramming of human embryonic fibro-

blasts into iPSCs, and the addition of YAP to Sox2, Oct4, and

KLF4 increases iPSC’s reprogramming efficiency in mouse embry-

onic fibroblasts, further confirming a positive role of YAP in

stemness [87].

Moreover, it has been reported that the Hippo pathway can

interact with other pathways to promote and maintain pluripo-

tency. For example, TAZ associates with Smad2/3 to maintain

the nuclear accumulation of Smad complexes, thereby promoting

expression of pluripotency markers (Oct4, Nanog) in response to

TGF-b stimulation [80]. Another piece of evidence linking the

Hippo and TGF-b/BMP pathways is the finding that YAP binds

Smad1 to regulate the induction of Id family members for mESC

maintenance upon stimulation with BMP [81]. Finally, TAZ has

been identified as a coactivator of Pax3-dependent transcription,

which influences the expression of various genes during embryo-

genesis [89].

Thus, in ESCs, YAP/TAZ promotes stemness directly, as well as

indirectly by mediating TGF-b/BMP or LIF signaling, through regu-

lating the expression of genes responsible for maintaining pluripo-

tency both in vivo and in vitro [86,87]. These studies implicate the

Hippo pathway with those involved in maintaining ESC pluripoten-

cy and controlling cell fate specification in development. In conclu-

sion, YAP, TAZ, and TEAD proteins seem to be key regulators for

maintaining the pluripotent properties of both ESCs and iPSCs in

mammals. The transcription coactivator activity of YAP/TAZ is

similarly required for promoting stem cells as well as normal cell

proliferation. In addition, TEAD is likely to be involved in both the

stemness and proliferation function of YAP/TAZ. However, depend-

ing on cell context, YAP/TAZ must induce expression of different

genes between stem cells and differentiated cells. It is also possible

that besides TEAD, different transcription factors may be used by

YAP/TAZ in stem cells compared to differentiated cells to induce

downstream target gene expression, thereby promoting and main-

taining stem cells.
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Figure 2. A model of TE and ICM specification regulated by Hippo-YAP pathway in preimplantation embryo.
During preimplantation, the outer blastomeres of the embryo form an outer epithelial trophectoderm (TE) that envelopes the remaining blastomeres, the inner cell mass
(ICM). The Hippo pathway plays important roles in this cell fate specification. The outer cells have an outside exposed surface and are composed of plasma membranes with
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Liver: Liver progenitor cells and tumorigenesis

The liver is the most important metabolic organ and has a high

regenerative capacity and is able to regenerate after more than 70%

hepatectomy. Hepatocytes are the predominant cell type in the adult

liver and are mitotically quiescent. The regenerative capacity of the

liver depends on hepatocyte proliferation, although the liver also

contains oval cells (OCs) which are capable of generating a transit

precursor compartment. Liver regeneration has been known for

many years, although the underlying mechanisms and how the liver

senses when it has reached its original size are still poorly under-

stood [90].

Previous studies in Drosophila have implicated the Hippo path-

way as a central mechanism that restricts tissue overgrowth during

development and it derailed under pathological conditions contrib-

utes to tumorigenesis [91]. The Hippo pathway impinges on the

transcriptional coactivator Yki to regulate the transcription of target

genes involved in cell growth, proliferation, and survival. Conserva-

tion of mammalian homologs for all the known components of the

Drosophila Hippo pathway has facilitated investigation of the physi-

ological roles of Hippo signaling in mammals. While it was already

suggested based on the Drosophila data that the Hippo pathway is

involved in mammalian tumorigenesis, Dong et al [12] provided

functional evidence that the mammalian Hippo pathway is a potent

regulator of organ size and that its dysregulation leads to tumorigen-

esis in the liver. Induction of YAP overexpression using a condi-

tional YAP transgenic mouse resulted in massive hepatomegaly via

an increase in the number, but not the size, of the liver cells. Inter-

estingly, the YAP-induced enlarged livers reverted back to their

original size without any gross abnormalities when the expression

of transgenic YAP was repressed. These data clearly establish a

predominant role of YAP in organ size control in mice [92,93].

However, when YAP overexpression was maintained for an

extended period of time, the transgenic mice develop liver tumors

similar to hepatocellular carcinoma, suggesting a role of hyper-YAP

activation in cancer development.

More recently, other components of the Hippo pathway have

been shown to repress proliferation and restrict liver growth. Dele-

tion of both MST1 and MST2 results in embryonic lethality [94–

96]. However, a single copy of MST1 or MST2 (mice with geno-

type of either MST1�/�, MST2+/� or MST1+/�, MST2�/�) is

sufficient to support normal embryonic development. During later

stages of development, loss of MST1 or MST2 promotes prolifera-

tion of liver stem cells/progenitor cells such as oval cells. Prolifer-

ation of liver progenitor cells gives rise to both hepatocytes and

cholangiocytes (biliary epithelial cells, BECs), which are the prom-

inent epithelial cells of the bile duct. This eventually leads to the

development of liver tumors due to the loss of heterozygosity of

the remaining MST1 or MST2. These mice display characteristics

of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC)

with expansion and transformation of a mixed population of

tumor-associated liver progenitors [94]. Interestingly, YAP protein

levels were increased, while YAP phosphorylation and LATS1/2

phosphorylation were significantly reduced, relative to wild-type,

in the absence of MST1/2, indicating that YAP is a downstream

effector of MST1/2 in the liver. In contrast, TAZ protein levels and

phosphorylation status are decreased in the MST1/2-knockout liver

and tumors, suggesting that TAZ, a potential oncogene, is unlikely

to play a major role in overproliferation and tumorigenesis in this

model [95].

Intriguingly, liver-specific deletion of Sav1 enhanced proliferation

and expansion of hepatic progenitor cells (OCs) and these mice

eventually developed liver tumors with a mixed HCC and CC pheno-

type, distinct from HCC which originates from the aberrant prolifer-

ation of hepatocytes only. However, the levels of phosphorylated

YAP and phosphorylated LATS1/2 were not affected in the Sav1 KO

livers, suggesting that Sav is likely to play an essential role in OC

expansion and tumorigenesis in this model but, surprisingly, acts

independently of LATS1/2 and YAP [96,97].

Studies of NF2 conditional knockout mice also support a role for

YAP in liver tumorigenesis [93,98,99]. Inactivation of NF2 results

in hepatocyte and BEC proliferation, widespread hepatocellular

carcinoma, and bile duct hamartomas comprising cytokeratin-

positive biliary epithelial cells. Zhang et al [98] reported that NF2

and YAP act antagonistically to each other in the Hippo pathway to

regulate liver development and physiology. Deletion of only one

copy of YAP was sufficient to reverse the expansion of liver

progenitor cells and tumorigenesis driven by the loss of NF2.

Consistent with this finding, the NF2-deficient liver showed reduced

phosphorylation of YAP and LATS1/2 and increased YAP nuclear

localization, providing functional evidence that the main tumor

suppressive mechanism of NF2 is mediated through inactivating

YAP. On the other hand, EGFR signaling has also been implicated

in NF2 deletion-induced tumorigenesis. Pharmacologic inhibitors of

EGFR blocked OC expansion and tumorigenesis triggered by NF2

deletion [99]. Benhamouche et al also showed that liver-specific

deletion of NF2 leads to an early and dramatic expansion of

progenitor cells without any detectable alteration in YAP localiza-

tion and phosphorylation, arguing against a role for YAP in NF2

KO-induced tumorigenesis. Future studies are necessary to clarify

the discrepancy of these two reports regarding NF2 deletion-

induced YAP activation [98,99]. However, the general consensus is

that NF2 acts upstream of YAP and that other downstream effectors

of NF2 may also contribute to tumorigenesis.

Collectively, these data suggest that Hippo pathway components

may play an important role in maintaining hepatocyte quiescence

and regulating organ size in mammals, yet their dysregulation can

lead to stem cell expansion, overgrowth, and tumorigenesis through

multiple mechanisms. There are differences in the phenotypes

observed in the conditional knockout mouse models of various

Hippo pathway components (Fig 3). Thus, further studies are

needed to fully elucidate the roles of these Hippo pathway compo-

nents and their mechanisms of action in regulating of liver progeni-

tor cells.

Skin: Epidermal progenitor cells

The skin (epidermal tissue) in the human body undergoes constant

replenishing, completely replacing itself every 2 weeks throughout

an individual’s life [100]. The epidermal stem cells are located

within the basal layer and have a high proliferative capacity to

continuously produce new epidermis while still maintaining struc-

tural integrity. During development, the basal epidermal cells gener-

ate proliferative progenitor cells, which can only divide for a limited

number of cycles; these cells then leave the basal layer, migrate
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toward the skin’s surface as they terminally differentiate, eventually

leading to constant skin remodeling. When the skin is injured,

wound healing greatly accelerates this regenerating process by

which these inner progenitor cells migrate outwards. Epidermal

growth must be carefully balanced, because inadequate proliferation

results in the thinning of skin and loss of protection, whereas exces-

sive growth leads to hyperproliferative disorders.

Recent findings have implicated the importance of the Hippo

pathway in epidermal development and homeostasis. It has been

shown that inactivation of Sav1 (WW45) alleles leads to early

embryonic lethality, and histological examination displayed a thick-

ening of the epidermal skin layer in the embryos [101]. WW45-null

primary keratinocytes show hyperproliferation, progenitor expan-

sion, decreased apoptosis, and inhibition of terminal differentiation.
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These observations suggest that the Hippo pathway restricts the

pool of these progenitor cells.

Through molecular and genetic studies, two groups have inde-

pendently shown that YAP overexpression results in expansion of

the epidermal stem cells and progenitor cells in the epidermis

[42,102]. Mice carrying the YAP transgene reveal epidermal thick-

ening, hyperkeratosis, and squamous cell-like carcinoma in skin

grafts. Conversely, deletion of YAP in the epidermis or disruption of

the YAP–TEAD interaction during epidermal development resulted

in epidermal hypoplasia and loss of keratinocyte proliferation. This

phenotype was attributed to the gradual loss of the epidermal stem/

progenitor cells and the progenitor cells’ limited capacity for self-

renewal.

Surprisingly, deletion of MST1/2 did not lead to epidermal hyper-

plasia, indicating that YAP is regulated through an alternative mech-

anism that is not dependent on canonical Hippo pathway

components MST1/2 in the skin [41]. Consistent with an MST1/2-

independent regulation of YAP, recent studies have shown that

MST1/2 is not required for YAP activation by G-protein-coupled

receptor (GPCR) signaling. Cell adhesion and a-catenin have also

been implicated in YAP regulation. Interestingly, skin-specific dele-

tion of a-catenin, a component of adherens junctions and an impor-

tant tumor suppressor in epithelia, resulted in keratinocyte

hyperproliferation and squamous cell carcinoma that resemble the

phenotypes observed in YAP transgenic mice [41]. a-Catenin is

considered a critical sensor for cell density and provides the cell

with neighborhood information through the formation of density-

dependent cell–cell junctions (adherens junctions). Similar to a-cate-
nin, the Hippo signaling pathway has been implicated in cell contact

inhibition of proliferation as well as tissue growth control [103].

Notably, a-catenin can directly interact with YAP and suppress YAP

function, possibly by sequestering YAP at the plasma membrane

and preventing it from entering the nucleus [41]. These findings

provide a mechanistic explanation for how a-catenin modulates

YAP activity by translating context-dependent information to regu-

late stem cell proliferation and tissue expansion. It should be noted

that there is strong evidence supporting that angiomotin mediates

cell–cell contact and tight junction signals to inhibit YAP function

by both increasing YAP phosphorylation and physical binding

[78,104].

Nervous system: neural progenitor cells

YAP and TEAD2 are highly expressed in neural stem cells (NSCs),

which are multipotent progenitors present in the nervous system.

NSCs are capable of self-renewing and produce multiple neural

lineages which ultimately compose the central nervous system

(CNS) [85,105]. In the vertebrate’s developing neural tube, YAP is

expressed by ventricular zone progenitor cells and co-localizes

with Sox2, a neural progenitor marker [106,107]. Overexpression

of either YAP or a transcriptionally active form of TEAD in the

neural tube leads to reduced neural differentiation and a marked

increase in neural progenitor cell numbers due to accelerated cell

cycle progression and recurring cell cycle exit. These effects are

associated with the induction of cyclin D1 and the down-regula-

tion of NeuroM. Conversely, loss of YAP triggers cell death and

promotes premature neuronal differentiation in the chick neural

tube [106]. Both YAP gain-of-function and loss-of-function studies

in Xenopus demonstrate that YAP is required for expansion of

Sox2+ neural plate progenitors and Pax3+ neural crest progenitors

at the neural plate border and for maintaining these progenitor

cells in an undifferentiated state. The effects of YAP on Pax3+

neural crest progenitors are through the direct regulation of Pax3

transcription. YAP acts through TEAD to stimulate Pax3 expres-

sion. Previous studies have also suggested that mouse TEAD is

responsible for activating the Pax3 promoter and neural crest

expression in the mouse as well [108]. It is well documented that

the expansion of mouse neural progenitors is mediated by the acti-

vation of the Notch pathway; however, in the frog embryo, YAP’s

ability to repress neural differentiation is likely independent of

Notch signaling [107]. It has been shown that YAP is amplified or

up-regulated in human Shh-dependent medulloblastoma, a brain

tumor in children. Similarly, it was observed that YAP and its

target transcription factor TEAD1 are highly expressed in mouse

Shh-dependent medulloblastomas [109]. In addition, YAP is a

target of Shh signaling in the developing cerebellum. YAP expres-

sion and nuclear localization are induced in proliferating cerebellar

granule neural precursors, which are thought to be the cells of

origin for certain medulloblastomas. Additionally, it has been

suggested that mutation of Patched1 (PTCH1), which encodes an

inhibitor of hedgehog pathway, leads to the activation of YAP in a

non-cell-autonomous manner and alters hedgehog pathway in

medulloblastoma cells and tissue samples [110]. These studies

show a critical role for YAP and TEAD in neuronal progenitor cells

and medulloblastoma development.

Large-scale RNAi screens reveal that FatJ cadherin, the closest

homolog of the Drosophila dFat, is spatially restricted to the inter-

mediate regions of the neural tube and acts though YAP to regu-

late the number of neural progenitor cell pools within the dp4-vp1

domain [111]. Loss of NF2 also caused an overexpansion of the

neocortical progenitor pool by increasing YAP/TAZ protein levels,

enhancing nuclear localization of both these proteins, and up-

regulating their target genes in the mammalian dorsal telence-

phalon [112]. In addition, Hippo signaling had previously been

implicated in Ft/Ds signaling through its regulation of cell prolifer-

ation and differentiation in Drosophila, although there was no

direct evidence to implicate Ft/Ds signaling in regulating the

vertebrate Hippo pathway [113]. Cappello et al recently suggested

a connection of FAT4/DCHS1 and YAP in mammals. They

reported that knockdown of FAT4 or DCHS1 promotes neural

progenitor cell proliferation and malpositioning of cells in the

developing cerebral cortex [114]. These mouse data demonstrate

that reduced levels of FAT4 and DCHS1 increase the activity of

unphosphorylated YAP and a YAP-responsive transcriptional

reporter. Together, these findings reveal a novel function of

NF2 and FAT4 signaling in inhibiting neural progenitor expansion

during brain development and establish YAP/TAZ as key

effectors.

To date, the proposed model is that YAP promotes NSC prolif-

eration by serving as an effector of the Shh pathway in the brain.

A full understanding of the role of the Hippo pathway in NSC

requires future studies to examine crosstalk between Hippo

and other signaling pathways such as the MAPK, Ephrin,

Wnt, and Notch pathways that are also thought to control brain

development.
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Cardiac progenitor cells and muscle progenitor cells

The fetal heart grows through the proliferation of cardiomyocytes,

and following birth, postnatal cardiomyocytes undergo hypertrophy

to reach an optimal size. Although it was traditionally believed that

the adult human heart lacks adequate myocardium regenerative

potential for repair, recent studies have identified endogenous stem

cells with the regenerative capacity to repair lost or damaged heart

tissue during the late cardiac development of the adult heart [115].

Unlike other tissues such as the liver, the role of Hippo signaling

in the heart is less well understood. It has recently been shown that

a cardiac-specific deletion of Sav1 or overexpression of a constitu-

tively active YAP mutant in embryos results in embryos within

cardiomegaly due to increased cardiomyocyte proliferation. Ablation

of either the MST1/2 or LATS1/2 kinases, the upstream inhibitory

kinases of YAP, causes perinatal lethality resulting from an over-

grown heart due to elevated cardiomyocyte proliferation, similar to

the Sav cKO heart [116,117]. Genetic interaction studies have shown

that nuclear YAP interacts with b-catenin in cardiomyocytes,

directly activating b-catenin target genes to promote Wnt signaling,

which has already been implicated in cardiac repair and cell repro-

gramming. Loss of b-catenin in the Sav cKO hearts suppressed the

overgrowth phenotype caused by Hippo pathway inactivation,

suggesting that the Hippo pathway restrains cardiomyocyte prolifer-

ation and heart size by inhibiting Wnt signaling [118]. Another

recent study showed that YAP activates the IGF pathway during

heart development, resulting in the inactivation of GSK3b, which in

turn inhibits b-catenin degradation [119]. More recently, Xin et al

have reported that expression of constitutively active YAP promotes

proliferation of adult cardiomyocytes and enhances adult heart

regeneration in response to injury. YAP-expressing cardiomyocytes

behave similar to embryonic cells with regard to their regenerative

potential [120].

Conversely, loss of YAP leads to embryonic lethality through

myocardial hypoplasia, due to reduced cardiomyocyte proliferation

in the embryonic heart [119,121]. Thus, YAP connects Hippo signal-

ing and other growth-promoting pathways, such as IGF and Wnt

signaling, to regulate embryonic and neonatal cardiomyocyte prolif-

eration. This is mediated at least in part by its interaction with

b-catenin, directly promoting a stemness gene expression program

[117–119,121].

A role for the Hippo pathway in skeletal muscle is beginning to

be delineated. YAP overexpression in C2C12 myoblasts and primary

mouse muscle stem cells blocks the progression of myoblasts

through the myogenic program and preserves the progenitor-like

and proliferative properties [122,123]. High YAP expression and

activity expands the pool of activated satellite cells, the resident

stem cells in skeletal muscle, and prevents the differentiation of this

cell population. Interestingly, overexpression of TAZ increases

myogenic gene expression in a MyoD-dependent manner, thereby

promoting myogenic differentiation [124]. Despite the high level of

sequence identity between YAP and TAZ, their opposite effects on

muscle progenitor fate is a nice illustration of the complexity and

context specificity associated with Hippo pathway activation or inhi-

bition and the resulting transcriptional response. Obviously, further

studies need to be carried out in vivo to conclusively determine the

role of Hippo signaling, particularly the opposing functions of YAP

and TAZ, in cardiac and skeletal muscle biology.

Intestine: Intestinal stem cells

Intestinal stem cells (ISCs) are responsible for the constant

renewal and repair of the intestinal epithelia to maintain tissue

homeostasis [125,126]. Recent studies have highlighted the role of

the Hippo pathway and its effectors YAP and Yki in intestinal

regeneration following tissue injury in both mice and Drosophila,

respectively. In general, the loss of Hippo signaling and/or the

elevated YAP activity is associated with stem cell expansion in

various organs [125,127]. However, in the intestine, there are

contradictory reports regarding the role of YAP in ISC expansion

and intestinal regeneration across different species and experimen-

tal settings.

The function of the Hippo pathway and YAP in ISCs has mostly

been studied in the context of intestinal regeneration following

tissue injury in transgenic animal models (Fig 4). In the DSS-

induced colonic regeneration model by Cai et al, YAP protein levels

are elevated following tissue injury. In addition, the specific deletion

of YAP in the intestinal epithelium prevented DSS-induced intestinal

regeneration, suggesting that YAP is required for these processes

[128]. Correlating with the function of the Hippo pathway to

suppress YAP activity, loss of Hippo signaling in Sav1-deficient

crypts displayed accelerated regeneration upon DSS-induced injury

in a YAP-dependent manner [128]. Similarly, Zhou et al [129]

showed that deletion of the core Hippo kinase MST1/2 in the intesti-

nal epithelium resulted in a marked expansion of the ISC compart-

ments due to YAP hyperactivation. Ubiquitous overexpression of

YAP-S127A, which lacks the phosphorylation site required for inac-

tivation by the Hippo pathway, also resulted in the loss of differenti-

ation markers and expansion of an undifferentiated cell population

in the mouse intestine [92].

On the other hand, Barry et al [130] reported that specific expres-

sion of YAP in the intestinal epithelium suppresses intestinal

renewal and reduces the ISC population by restricting Wnt/b-
catenin signaling. Intestinal regeneration after irradiation is charac-

terized by hyperactivation of Wnt/b-catenin signaling. Consistently,

deletion of YAP resulted in Wnt hypersensitivity and led to ISC

expansion and crypt hyperplasia after injury by irradiation. These

results are at odds with the role of YAP in the DSS-induced colonic

regeneration model.

Another inconsistency is in the crosstalk between YAP and Wnt/

b-catenin signaling and their role in intestinal regeneration. The

Sav1-deficient mouse colons developed polyps after DSS-induced

regeneration, which showed nuclear accumulation of YAP, but not

b-catenin [128]. This is consistent with the observation by Barry

et al [130] that YAP-S127A expression restricts Wnt/b-catenin
signaling during intestinal regeneration. In contrast, Zhou et al

[129] reported that in the MST1/2-deficient intestinal epithelium,

nuclear accumulation of YAP correlates with b-catenin activation.

Uncontrolled tissue regeneration after injury can become oncogenic,

like in colon cancer. In this context, Barry et al underscored that

YAP is silenced in a subset of highly aggressive human colorectal

carcinomas, whereas Zhou and co-workers showed a striking preva-

lence of YAP overexpression in 95% of colonic cancer specimens

[129,130]. The complex nature of YAP in the context of ISC expan-

sion, intestinal regeneration, and its relation to Wnt/b-catenin
signaling certainly requires further investigation. Nevertheless,

these studies point to a role of YAP in ISC, either positively by
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directly promoting ISC or negatively by indirectly inhibiting Wnt

signaling.

In the Drosophila midgut, the Hippo pathway and Yki facilitate

intestinal regeneration after tissue injury [131–133]. Perturbation of

Hippo signaling or overexpression of a constitutively active Yki

mutant (Yki-S168A) induced the expression of the Upd (Out-

stretched), which is a cytokine that stimulates expansion of ISC

through the JAK/STAT pathway. However, further investigation is

required to address whether Upd acts in an autocrine fashion via

Hippo-Yki signaling in the ISC [131] or whether it triggers a non-

autonomous increase in ISC expansion via Hippo-Yki signaling in

the enterocytes [132].

Hippo signaling and cancer stem cells

As discussed above, the Hippo pathway plays a key role in regulat-

ing organ size and tumorigenesis by inhibiting cell proliferation,

promoting apoptosis, and regulating stem/progenitor cell expansion

[134,135]. Phosphorylated YAP/TAZ localizes to the cytosol,

decreasing tumor growth, whereas unphosphorylated YAP/TAZ is

localized mainly in the nucleus and promotes cell and tumor

growth. Indeed, there is considerable evidence that abnormal Hippo

signaling is associated with tumor progression. As expected,

elevated expression and activity of YAP/TAZ correlates with various

human cancers [103,136–138].
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Figure 4. The context-dependent role of YAP in intestinal stem cell expansion.
In the intestinal stem cells (ISC), the Hippo pathway inhibits YAP activity by phosphorylation and cytosolic retention of YAP. The cytosolic YAP directly binds
to b-catenin and subsequently inhibits the canonical Wnt signaling. In Mst1/2�/� intestinal epithelia, loss of Hippo pathway regulation promotes dephosphorylation
and nuclear translocation of YAP/b-catenin and induces their target gene expression. Activation of YAP/b-catenin results in the expansion of ISC. However, a controversial
role of YAP has been demonstrated in the context of Wnt-induced intestinal regeneration. In YAP�/� intestinal epithelia, hyperactivation of Wnt/b-catenin signaling results in
ISC expansion, whereas YAP overexpression represses Wnt/b-catenin signaling, which leads to the loss of ISC and epithelial self-renewal. In this context, YAP functions to
inhibit the nuclear translocation of disheveled (Dvl).
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Moreover, TAZ has been shown to be a key regulator of cancer

stem cells (CSCs) in breast cancer [139]. In addition, YAP and TEAD

are highly expressed in CSCs of medulloblastomas [109]. Increasing

evidence has suggested that tumor growth is dependent on CSCs,

which represent a small subset of cells within a tumor but have the

ability to self-renew, differentiate into other tumor cell types, and

initiate tumor formation. CSCs are also thought to be resistant to

chemotherapeutic agents and are responsible for cancer recurrence

and metastasis. High-grade tumors are characterized by a higher

population of CSCs within the tumor. Microarray analysis of 993

primary human breast tumors has identified a list of genes highly

expressed in G3 (tumors that poorly differentiated tumors)

compared to G1 (benign tumors) [139]. Interestingly, elevated YAP/

TAZ activity is observed in G3 tumors, which are also characterized

by the expression of embryonic and normal mammary stem cell

genes. Using a model for tumor progression, Cordenonsi et al

demonstrated a role for TAZ in breast cancer cells [139]. Upon injec-

tion in mice, MII cells, which are Ras-transformed MCF10A-T1k,

generate low-grade tumors. On the other hand, MIV cells, which are

malignant MCF10A-CA1a cells derived from the in vivo spontaneous

evolution of MII cells, readily formed tumors resembling G3 tumors.

TAZ was highly expressed in the MIV cells, but not the MII cells,

whereas YAP levels were comparable across both cell lines. Overex-

pression of active TAZ increases MCF10A proliferation and the

formation of invasive carcinomas. These observations support an

important role of TAZ in breast cancer stem cells.

Other studies have shown that nuclear TAZ is highly expressed

in high-grade glioblastomas. Ectopic expression of TAZ leads to

increased invasion, self-renewal, and tumor initiating capacity to

generate properties similar to mesenchymal-like stem cells [140].

Conversely, knockdown of TAZ expression in mesenchymal-like

stem cells decreases their mesenchymal properties and limits their

capacity to self-renewal and initiate in glioma. Collectively, it is

clear that TAZ enhances the self-renewal capacity and tumorigenic

potential contributing to both the initiation and progression of

breast cancer and glioma. Therefore, TAZ could be a potential

molecular target for treating aggressive tumors that have uncon-

trolled TAZ activation.

Dysregulation of the Hippo pathway has been identified in a

broad range of human cancers, including liver, lung, colorectal,

ovarian, and prostate [12,103,137]. Studies have shown that YAP

activity is increased as a result of increased expression and nuclear

localization in human tumor samples. This is consistent with inacti-

vation of the Hippo pathway which is known to inhibit YAP and

TAZ activity mainly by promoting these transcriptional coactivators’

cytoplasmic localization and ubiquitin-mediated degradation. In

addition, YAP gene amplification (somatic mutation) has been

reported in various human and murine tumor models [136,141].

Collectively, these data suggest that unrestrained YAP activity can

counteract classical tumor suppressor checkpoints.

Compared with other well-known oncogenic signaling pathway,

only few cancers are known to be associated with a direct mutation

of a Hippo pathway component. Of note, Lats2 is mutated in approxi-

mately 40% of mesothelioma cases [142]. Interestingly, Mst1/2 and

Lats1 are tumor suppressors in mice, and although mutation in these

genes have not been identified in human cancer, silencing of these

genes have been reported to data, suggesting that these genes may

be inactivated by non-mutational mechanisms [94–96,129,143–146].

NF2 is a potent upstream regulator of the Hippo pathway, and an

inactivating mutation in NF2 is associated with several human

cancers including acoustic neuromas, meningiomas of the brain, and

schwannomas of the dorsal roots of the spinal cord [146,147]. A high

frequency of NF2 mutations has also been reported in mesothelioma

[148,149]. Recently, a TAZ and calmodulin-binding transcription

activator 1 (CAMTA1) fusion gene has been reported in epithelioid

hemangioendothelioma, a rare form of sarcoma [150,151]. The role

and mechanism of this fusion protein in cancer progression is still

unclear, but may relate to the transcriptional regulatory functions

ascribed to both TAZ and CAMTA1.

Many studies have reported a high frequency of mutations in various

GPCRs (GPR98, GRM3, AGTRL1, LPHN3, and BAI3) and G-proteins

(GNAS, GNAQ, and GNAO1) across a wide range of cancers, particu-

larly in melanoma [152–154]. Notably, activating mutations in

GNAQ and GNA11 have been observed in approximately 50% of

uveal melanomas. And in these uveal melanomas with activating

mutations in GNAq or GNA11, we found that YAP is constitutively

activated and its activation is pathologically critically important.

Collectively, extensive studies have established a critical role for

the Hippo pathway in human tumorigenesis. Inhibiting YAP/TAZ

may be a new therapeutic area for treating cancers with a dysregu-

lated Hippo pathway.

Conclusions

Although most of the Hippo pathway components were initially

identified in Drosophila, much research has recently been done in

mammalian cells and animal models, revealing this pathway’s

important contribution to tissue homeostasis, organ size control,

cancer development, and stem cell biology. As the key downstream

effectors of the Hippo pathway, YAP/TAZ is involved in embryonic

stem cells as well as tissue-specific stem cell self-renewal, and tissue

regeneration and homeostasis of the liver, intestine, pancreas, heart,

skin, and central nervous system. Moreover, compelling evidence

supports a role for YAP/TAZ in cancer stem cells. Therefore, compo-

nents of the Hippo pathway may be good therapeutic targets in

diseases such as degeneration and cancer.

Since the discovery of the Wrts kinase in Drosophila in 1995, for

the first decade research in the Hippo pathway was largely limited

to Drosophila. However, rapid progress, especially in the last several

years, has been made regarding the identification of upstream

components, signals, and mechanisms of regulation in both

Drosophila and mammalian systems. Cell polarity, adhesion,

mechanotransduction, as well as diffusible signals acting through

GPCRs, have all been identified as regulators of Hippo pathway

activity. However, many key questions remain to be addressed. The

function of YAP/TAZ has been investigated in only a few cell types.

Further studies to uncover the physiological roles of YAP/TAZ in a

broad range of tissue-specific stem cells and various types of cancer

stem cells will likely expand our knowledge of the Hippo pathway

in regulating tissue homeostasis during development and adulthood

as well as cancer initiation and metastasis. Organ size regulation is

a fundamental question in biology, though the signals critical for

sensing organ size control, with each organ presumably having its

own specific signals, are unknown. Research into the molecular

signals controlling organ size will be of paramount importance not
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only for the Hippo pathway but also for the field of developmental

biology. Because the Hippo pathway is regulated by a wide range of

signals, both physical and chemical, how the Hippo pathway inte-

grates all of these inputs from multiple signaling pathways to gener-

ate a concerted cellular response remains a question of high

interest. Understanding the molecular mechanisms by which the

Hippo pathway controls development, regeneration, tissue homeo-

stasis, and injury/repair will require the input of researchers across

multiple disciplines, including genetic, genomic, developmental,

systems biology, cell biology, biochemistry, and cancer biology.

Given the increasing research interest in this pathway, continued

rapid progress is eagerly anticipated.
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Sidebar A: In need of answers

(i) Does the stemness function of Hippo-YAP pathway differ from its
more classic role in cell growth regulation? Are different down-
stream target transcription utilized in both processes?

(ii) What are the molecular bases for the differential functions of YAP
and TAZ in stem cells? Is this simply due to differential expression
of these two proteins?

(iii) How is YAP/TAZ regulated by stemness signals? Is there hippo
kinase cascade MST-Lats independent regulation of YAP/TAZ?

(iv) YAP/TAZ clearly plays different roles in different stem cell types,
either being inhibitory or activating. What determines the specific-
ity and complexity of the Hippo-YAP in tissue-specific stem cells?
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